

## S-Trap<sup>TM</sup> Micro Spin Column



The Protifi<sup>TM</sup> S-Trap<sup>TM</sup> technology combines robust Sodium Dodecyl Sulfate (SDS) solubilization of biological samples and enhanced contaminant removal for proteomic analysis by mass spectrometry. **S-Trap<sup>TM</sup> Micro Spin Columns** allow for the solubilization, reduction, alkylation, and digestion of **≤ 100 µg of total protein** cleaned and ready for peptide analysis.

### Additional Reagents/Solutions (Not Included)

Liquid Chromatography-Mass Spectrometry (LC-MS) grade is recommended, where applicable

- Protein sample (**1 µg - 100 µg of total protein**)
- Protease of choice (e.g. Trypsin or Trypsin/Lys-C)\*
- LC-MS grade Water
- LC-MS grade Isopropyl Alcohol (IPA)
- LC-MS grade Methanol (MeOH)
- LC-MS grade Acetonitrile (ACN)
- LC-MS grade Formic Acid (FA)
- SDS
- 1 M Triethylammonium Bicarbonate (TEAB), pH 8.5
- (Tris(2-carboxyethyl)phosphine) (TCEP)
- Methyl Methanethiosulfonate (MMTS)
- Phosphoric Acid
- Benzonase® (optional)\*

\* Benzonase<sup>®</sup> and proteases are susceptible to freeze-thaw cycles.

### Equipment/Materials (Not Included)

- pH meter with reference solutions
- Balance
- Single channel pipettes (P2 through P1000) and corresponding tips
- 1.7 mL sample tubes
- Benchtop centrifuge
- Vortex mixer
- Heat block (adjusted to 55 °C)
- pH paper (pH < 1, optional)
- Water bath or humidified incubator (adjusted to 47 °C)
- Lyophilizer or SpeedVac
- Positive pressure apparatus or vacuum manifold (optional)
- Sonicator (optional, recommended)

### Stock Solutions and Reagent to Prepare PRIOR to Start:

All indicated solutions (\*\*) can be purchased at [protifi.com](https://protifi.com)

|                                |                                                          |                                                                                        |
|--------------------------------|----------------------------------------------------------|----------------------------------------------------------------------------------------|
| <b>Protein Sample</b>          | Your sample                                              | 1 µg – 100 µg                                                                          |
| <b>Protease</b>                | Your choice of protease (E.g., Trypsin or Trypsin/Lys-C) | 1 µg - 10 µg per 100 µg of sample in <b>Solution 6 (Digestion Solution)</b>            |
| <b>Benzonase (optional)</b>    | Benzonase <sup>®</sup> and MgCl <sub>2</sub>             | Benzonase & 50 mM MgCl <sub>2</sub>                                                    |
| <b>Solution 1**</b>            | 2x Lysis Solution                                        | 10% (w/v) SDS, 100 mM TEAB in LC-MS grade Water, pH 7.55                               |
| <b>Solution 2**</b>            | Reductant                                                | 120 mM TCEP in LC-MS grade Water                                                       |
| <b>Solution 3**</b>            | Alkylator                                                | 500 mM MMTS in LC-MS grade IPA (mass shift is + 45.988, addition of SCH <sub>2</sub> ) |
| <b>Solution 4**</b>            | Acidifier                                                | 27.5% (v/v) Phosphoric Acid in LC-MS grade Water*                                      |
| <b>Solution 5**</b>            | Binding/Wash Solution                                    | 100 mM TEAB (final) in 90% LC-MS grade MeOH, pH 7.5                                    |
| <b>Solution 6**</b>            | Digestion Solution                                       | 50 mM TEAB in LC-MS grade Water, pH 8.0                                                |
| <b>Solution 7 (optional)**</b> | Elution Solution                                         | 0.2% (v/v) LC-MS grade FA in LC-MS grade Water                                         |
| <b>Solution 8 (optional)</b>   | Elution Solution 2                                       | 50% (v/v) LC-MS grade ACN in 0.2% (v/v) LC-MS grade FA                                 |

All solutions can be made in advance and stored at -20 °C or colder. After thawing, mix thoroughly to ensure any precipitants are redissolved.

\* Acidifier must be stored **tightly capped**; it will degrade upon atmospheric exposure.

RT = room temperature (20-25 °C), v/v = volume-to-volume ratio, w/v = weight-to-volume ratio, w/w = weight-to-weight ratio

**Protocol:**

**Refer to Appendices for Sample-Specific Considerations, Alternative Proteases, and Troubleshooting Tips.**

1. **Denature Protein.** To 11.5 µL of liquid sample, add 11.5 µL of **Solution 1 (2x Lysis Solution)**. For solid samples, dilute **Solution 1 (2x Lysis Solution)** to 1x by adding an equal volume of LC-MS grade water. Add 23.0 µL of 1x Solution 1 to a solid sample. Sonicate or vortex to fully solubilize and denature proteins.
2. If sample is viscous due to the presence of DNA, sheer it thoroughly by probe sonication or enzymatically with a nuclease such as Benzonase™ (see Appendix D). Unsheared DNA will clog the protein trap.
3. Clarify sample as desired by centrifugation (e.g. 13,000 x g for 8 minutes). Transfer clarified lysate to tubes. Pellet can be analyzed separately (see Appendix D).
4. **Reduce.** Add 1.0 µL of **Solution 2 (Reducant)**. Vortex briefly and incubate at 55 °C for 15 minutes.
5. **Alkylate.** Add 1.0 µL of **Solution 3 (Alkylator)**. Vortex briefly and incubate at RT for 10 minutes.
6. **Acidify.** Add 2.5 µL of **Solution 4 (Acidifier)** to the sample. Vortex briefly. pH paper can be used to ensure pH ≤ 1. Proceed to the next step immediately.
7. Add 165 µL of **Solution 5 (Binding/Wash Solution)** to the sample. Mix thoroughly.
 

**Note:** The sample may appear translucent at this step due to colloidal protein formation. Do NOT centrifuge.
8. Place an **S-Trap™ Micro Spin Column** in a 1.7 mL sample tube for waste flow-through. Transfer the entire sample, including any insoluble material, to the top of the column.
 

**Note:** The column reservoir can hold ~275 µL of solution. For larger volumes, the column can be loaded multiple times with the solution from Step 7. When transferring into the column, do not disturb the matrix.
9. **Trap Protein.** Centrifuge the **S-Trap™ Micro Spin Column** and waste flow-through tube at 10,000 x g for 30 seconds. Visually confirm that all solution passed through the column. If not, centrifuge again until no liquid remains. If the solution still hasn't passed through, the column may be centrifuged as high as 15,000 x g until all solution passed through. Discard flow-through and return the column to the 1.7 mL sample tube.
 

**Note:** The S-Trap™ Micro Spin Columns end in a Luer taper. A vacuum manifold or positive pressure can be used to draw solution through the column.
10. **Clean Protein.** Add 150 µL of **Solution 5 (Binding/Wash Solution) with MeOH added** to the **S-Trap™ Micro Spin Column** and centrifuge at 10,000 x g for 30 seconds. Visually confirm that all solution passed through the column. Repeat washes 3 times; discard flow-through as necessary. Return the column to the 1.7 mL sample tube.
 

**Note:** For best results, rotate the column 180° between centrifugations. Marking the outside edge of the column makes it easier to track rotations.
11. Centrifuge the **S-Trap™ Micro Spin Column** at 10,000 x g for 1 minute to fully remove all Binding/Wash Solution.
12. Transfer the protein-containing **S-Trap™ Micro Spin Column** to a clean 1.7 mL sample tube for digestion.
13. Dilute trypsin or trypsin/Lys-C in **Solution 6 (Digestion Solution)** to a final volume of 20.0 µL, ensuring that the amount of trypsin in this solution is at a 1:10 – 1:100 (w/w) ratio with the total amount of protein in the sample (e.g. 1 µg - 10 µg per 100 µg of sample).
14. Transfer the entire 20.0 µL of trypsin or trypsin/Lys-C solution to the **S-Trap™ Micro Spin Column**. The matrix is hydrophilic and will absorb the solution; no centrifugation is necessary.
 

**Note:** If bubbles are present, flick the tube gently to remove them and/or spin the column very briefly using a benchtop centrifuge. If any solution flows through, pipette it back on top of the column.
15. **Incubate & Digest.** Loosely screw the cap on the **S-Trap™ Micro Spin Column** to limit evaporative loss so that trypsin solution is not pushed through the column due to thermal expansion; allow air to escape. Pipette any solution that passes through back on top of the column. Place the column and sample tube in a 47 °C water bath or humidified incubator for 1 - 2 hours. If using a water bath, make sure the column matrix sits below the water level to ensure even heating.
16. **Elute 1.** Remove the **S-Trap™ Micro Spin Column** with sample tube from the incubator and add 40.0 µL of **Solution 6 (Digestion Solution)** to the top of the column. Centrifuge at 10,000 x g for 1 minute.
17. **Elute 2.** Add 40.0 µL of **Solution 7 (Elution Solution)** to the top of the **S-Trap™ Micro Spin Column**. Centrifuge at 10,000 x g for 1 minute.
18. **Elute 3.** If hydrophobic peptides are of interest, add 40.0 µL **Solution 8 (Elution Solution 2)** to the top of the **S-Trap™ Micro Spin Column**. Centrifuge at 10,000 x g for 1 minute.
19. Lyophilize or SpeedVac eluted peptides collected from Steps 16-18 in the sample tube. Resuspend as needed for subsequent analysis (e.g. Aqueous Buffer A such as 5% ACN, 0.1% FA).